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Abstract 

     In this paper, a well-known mathematical model of electric power transmission line is 

considered. From this model, a known mathematical expression has been developed which 

describes how the line voltage varies with the distance taking as starting point the end of the line. 

     We use this model and the data of a typical electric transmission line to calculate how the line 

voltage varies. The results are also graphed in order to have an optical view of how the line voltage 

behaves.  Finally, the results are compared to those expected from the theoretical analysis of the 

model and the relative conclusions are drawn. 
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List of Symbols 

   R   = long-wise omhic resistance of power transmission line (under sinusoidal voltage) 

            per unit length of line (Ω/km) 

   L   = long-wise inductance of power transmission line (under sinusoidal voltage) 

            per unit length of line (H/km) 

   C   = transversal capacitance of power transmission line (under sinusoidal voltage) 

            per unit length of line (F/km) 

   G   = transversal conductance of power transmission line (under sinusoidal voltage) 

            per unit length of line (S/km) 
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     l    = length of power transmission line (km) 

    z   = R+jωL = long-wise complex impedance of power transmission line  

            per unit length of line (Ω/km) 

    y   = G+jωC = transversal complex conductance of power transmission line  

             per unit length of line (S/km) 

    Z   = z.l = total long-wise complex impedance of power transmission line (Ω) 

    Y   = y.l = total transversal complex conductance of power transmission line (S) 

    VS  = complex line to earth voltage at the beginning of power transmission line, 

             Sending voltage (V) 

    VR = complex line to earth voltage at the end of power transmission line, 

             Receiving voltage (V) 

    IS   = complex phase current at the beginning of power transmission line, 

             Sending current (A) 

    IR  = complex phase current at the end of power transmission line, 

             Receiving current (A) 

    γ   =   = α+jβ = transmission co-efficient of power transmission line (km-1) 

    α   =  reduction co-efficient of power transmission line (neper/km) 

    β   =  phase co-efficient of power transmission line (rad/km) 

    zC  =    = characteristic impedance of power transmission line (Ω) 

    ejφ =  cosφ +jsinφ = Euler’s equation 

    λ   =   = wave length of power transmission line (km) 

    υ   =  wave transmission velocity of power transmission line (km/sec) 

    τ   =  wave travelling time in order to cover the length of power transmission line (sec) 

    Δ   = electric phase (angle) of power transmission line (rad) 

       = electric phase (angle) of power transmission line per unit length of line (rad/km) 

    Vtrav(x) = voltage travelling wave as a function of distance x (V) 

    Vrefr(x) = voltage refracted wave as a function of distance x (V) 

    V(x) = voltage along the electric power transmission line as a function of distance x (V) 

    φ(x) = electric phase(angle) of respective complex quantity as function of distance x (°) 
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1. Introduction 

     Most people think of the voltage as an element that when they put it on, it is applied 

immediately. They cannot imagine that the voltage is a wave (an electromagnetic wave) that 

travels and refracts with almost the speed of light. This understanding is due to the length of line 

and the inability that people have to perceive the very small time intervals (psecs, μsecs, msecs 

depending on the line length) that the wave needs to cover these distances. 

     In this paper, the length under consideration is that of an electric power transmission line of an 

electric power system [1-23], a length of some hundred kilometers. The equivalent electric circuit 

under steady state conditions is drawn and the respective differential equations are extracted from 

it using as independent variable the distance x from either the rears of the line. Solving the 

differential equations, the mathematical expression describing the voltage along the line is 

obtained in section 2. The above mathematical model already exists in the literature and can easily 

be found [1-14].  

     It is shown that the voltage at any point x of the line is the algebraic summation of the voltage 

travelling and refracted wave at that point. The proof that the above voltages are the travelling and 

refracted wave respectively is the mathematical expressions themselves. They are the 

mathematical expressions of a travelling and refracted wave respectively. The fore-mentioned can 

also be traced in the literature [1-14]. The information given by the above solution is analysed in 

further detail in section 3. 

     As far as I know and search in the literature, I could not find calculation and graphical 

representation of the voltage along an electric power transmission line. Thus, in this paper, the 

above mathematical expression is tried on a typical electric power transmission line and the results 

are presented in section 4. Furthermore, in section 5, the above results are graphed in order to have 

an optical image of how the voltage along the line behaves. Finally, in section 6 a discussion is 

developed, the results are compared to the theoretical analysis of section 3 and in section 7 the 

relative conclusions are drawn. 

 

2. Development of the mathematical expression of line voltage  

     In figure 1, the electric equivalent representation of power transmission line under steady state 

conditions and using divided elements has been drawn. 

      where zdx = the infinitesimal long-wise complex impedance of dx 

                 ydx = the infinitesimal transversal complex conductance of dx 
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     From the infinitesimal element dx, the following equations are drawn : 

         1st law of Kirchhoff   :    [I(x)+dI(x)] = I(x) + dI(x) 

         2nd law of Kirchhoff  :    [V(x)+dV(x)] = V(x) + dV(x) 

         Voltage drop on element zdx  :  dV(x) = [I(x)+dI(x)] zdx = 

                                                                       I(x) zdx   = I(x) z         (1) 

 

 

     Figure 1. Electric equivalent representation of electric power transmission line 

         Voltage drop on element ydx  :  dI(x) = V(x) ydx   = V(x) y      (2) 

     Differentiating eqn 1 and replacing it into eqn 2, we get : 

                      = yz V(x)                                                                          (3) 

     Differentiating eqn 2 and replacing it into eqn 1, we also get : 

                      = yz I(x)                                                                             (4) 

     From equations (3) and (4), V(x) and I(x) are described by the same differential equations. The 

above implies that V(x) and I(x) are described by similar mathematical functions. 

 

y dx 

  
           V(x)                         VR 

  

    VS              V(x)+dV(x) 

  

dx                                x 

  

                                                dV(x) 

                                                

            IS                                z dx    I(x)+dI(x)   I(x)                              IR    

 

                                                                 dI(x) 
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     We take as initial conditions : 

                                        V(x=0) =  VR                                                             (5) 

                                and   I(x=0)  =  IR                                                              (6) 

i.e. we take as x=0 the end of power transmission line 

     Then from equations (3), (4), (5) and (6), we extract the following mathematical expressions of 

line voltage : 

                                        V(x)  =  eγx +  e-γx                       (7)                             

                                        Vtrav(x)  =  eγx                                            (8) 

                                        Vrefr(x)  =  e-γx                                           (9) 

 

3. Theoretical analysis of the mathematical expression of line voltage  

     Equation (7) can also be written in hyperbolic form : 

                                        V(x) = VR cosh(γx) +IR.zC sinh(γx)                        (10) 

     The term cosh(γx) can be written as : 

           cosh(γx)=cosh[(α+jβ)x]=cosh(αx+jβx)=cosh(αx).cos(βx)+jsinh(αx).sin(βx) 

     The term sinh(γx) can be written as : 

            sinh(γx)=sinh[(α+jβ)x]=sinh(αx+jβx) =sinh(αx).cos(βx)+jcosh(αx).sin(βx) 

     The above equations (8) and (9) are nothing else but the mathematical expressions of a wave. 

     On one hand, the terms (VR+IRzC) and (VR-IRzC) are constant complex numbers since VR, IR 

and zC are constant complex numbers. That implies that they have a constant magnitude and a 

constant phase. 

     On the other hand, the terms eγx and e-γx vary with distance x from the end of power 

transmission line. 

     The term eγx can be written as e(α+jβ)x = eαx ejβx = eαx[cos(βx) + j sin(βx)] 

     The values of α and β are real positive numbers for a typical real power transmission line. This 

will be understood from the following analysis. 

     The eαx is the magnitude of the above term while the ejβx is the phase (angle) of the above term. 

     The term eαx increases as x increases i.e. the magnitude of voltage travelling wave increases as 

we approach the beginning of line. In other words, the magnitude (intensity) of voltage travelling 

wave diminishes as the wave travels from the beginning of line (where the voltage is applied and 

the voltage travelling wave starts) to the end of line as one expects in real world (the intensity of 

signal diminishes as it moves away from source). 
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     The term βx similarly increases as x increases. With similar as above reasoning, the term βx i.e. 

the phase of voltage travelling wave diminishes as the wave travels from the beginning of line and 

moves to the end of line. 

     Similarly, the term e-γx can be written as e-(α+jβ)x = e-αx e-jβx = e-αx[cos(-βx) + j sin(-βx)] 

     With similar as above reasoning, the term e-αx decreases as x increases. In other words, the 

magnitude (intensity) of voltage refracted wave decreases as the wave moves from the end of line 

towards the beginning of line as one expects. It is really the part of voltage travelling wave that 

arrives at the end of line and refracts travelling to the opposite direction of line. 

     Additionally, the term –βx decreases as x increases i.e. the phase (angle) of voltage refracted 

wave decreases as the wave moves from the end towards the beginning of line. 

     Since from equation (7), the line voltage at point x is the algebraic summation of voltage 

travelling and refracted wave at the same point x and also taking into consideration the results of 

the above reasoning and depending on line parameters and the type of load at the end of line, we 

can state that in general the voltage magnitude and phase decrease from the beginning to the end of 

line. This implies having in mind the above that either or both the voltage magnitude and phase 

can also increase from the beginning to the end of line. 

 

4. Calculation of line voltage  

     We consider a typical electric power transmission line with the following parameters : 

                R = 0.107 Ω/km                 L = 1.362 mH/km 

                G = 0 S/km                        C = 0.0085 μF/km 

                f = 50 Hz                            l = 360 km 

                VR = 115470  kV        IR = 360.844  A 

      Then using the list of symbols and the analysis of section 2, we can calculate the other 

parameters of the above line : 

                zC = 406.41 -7.02  Ω 

                γ = 1.085x10-3 82.98  km-1 = (0.1326x10-3 + j 1.07687x10-3) km-1 

                α = 0.1326x10-3 neper/km              β = 1.07687x10-3 rad/km 

                λ = 5834.674 km 

                υ = 291733.696 km/sec                  τ = 1.234 msecs 

                Δ = 22.212                                     Δ/l = 0.0617 /km 
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     Using equations (7) or (10) and taking step Δx=10 km, we obtain the results given in table 1. 

 

 

 
α/α 

 

x 
(km) 

V(x) 
(Volts) 

φV(x) 
(°) 

Natural 
logarithm 

(ln)  
of V(x) 

1 0 115470.0 0 11.65677 

2 10 115859.9 0.764372 11.66014 

3 20 116256.9 1.525202 11.66356 

4 30 116661.2 2.282437 11.66703 

5 40 117072.3 3.036030 11.67055 

6 50 117490.2 3.785936 11.67411 

7 60 117914.8 4.532115 11.67772 

8 70 118345.7 5.274531 11.68137 

9 80 118783.0 6.013151 11.68505 

10 90 119226.2 6.747948 11.68878 

11 100 119675.4 7.478896 11.69254 

12 110 120130.3 8.205973 11.69633 

13 120 120590.6 8.929164 11.70016 

14 130 121056.3 9.648452 11.70401 

15 140 121527.2 10.36383 11.70789 

16 150 122003.0 11.07528 11.71180 

17 160 122483.6 11.78282 11.71573 

18 170 122968.7 12.48642 11.71969 

19 180 123458.2 13.18610 11.72366 

20 190 123952.0 13.88186 11.72765 
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α/α 

 

x 
(km) 

V(x) 
(Volts) 

φV(x) 
(°) 

Natural 
logarithm 

(ln)  
of V(x) 

21 200 124449.7 14.57371 11.73166 

22 210 124951.3 15.26165 11.73568 

23 220 125456.5 15.94571 11.73971 

24 230 125965.2 16.62589 11.74376 

25 240 126477.1 17.30221 11.74782 

26 250 126992.1 17.97469 11.75188 

27 260 127510.0 18.64335 11.75595 

28 270 128030.6 19.30822 11.76002 

29 280 128553.6 19.96933 11.76410 

30 290 129079.1 20.62669 11.76818 

31 300 129606.6 21.28035 11.77226 

32 310 130136.2 21.93032 11.77634 

33 320 130667.5 22.57665 11.78041 

34 330 131200.4 23.21936 11.78448 

35 340 131734.7 23.85850 11.78855 

36 350 132270.3 24.49410 11.79260 

37 360 132807.0 25.12620 11.79665 

 

          Table 1.  Calculation results of voltage along the electric power transmission line  

 

 

5. Graphical presentation of line voltage  

     The graphical presentations of results obtained in table 1 are given in graphs 1 to 3. 
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Graph 1.  Voltage magnitude (left graph) and voltage phase (angle) (right graph) 

from the end towards the beginning of line. 

                 (direction right to left of electric power transmission line of figure 1) 

 

 

           

 

Graph 2.  Voltage magnitude (left graph) and voltage phase (angle) (right graph) 

                      from the beginning towards the end of line (direction opposite to that of 
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                 graph 1 ie. left to right of electric power transmission line of figure 1) 

 

 

 

 

 

Graph 3.  Natural logarithm (ln) of Voltage magnitude from the beginning towards  

the end of line (left graph) and vice versa (right graph) 

 

      In graph 1 appear the line voltage magnitude and line voltage phase and how they change 

across the line as we move from the end to the beginning of the line ie. as we move from the right 

rear of the equivalent line circuit of figure 1 towards the left rear of the same circuit. 

      In graph 2 appear the above, ie. the line voltage magnitude and line voltage phase and how 

they change across the line this time as we move from the beginning of the line(left rear of line 

equivalent circuit of figure 1) towards the end of the line(right rear of the equivalent line circuit of 

figure 1). 

      The curves of graphs 1 and 2 may appear common but they are not. Some of them may look 

straight lines or almost straight lines but they are not. The above quantities have an exponential 

behaviour as someone can verify from equation 7. Their graphical representations depend on the 

values of their exponential constant factors (α and β). If their values are small and as variable x 

increases, the values αx and βx do not change enough in order their exponential behaviour to 

appear on the graphs. This is the reason they seem to be straight or almost straight lines. 

      Therefore, when on one hand the natural logarithm (ln) of the line voltage magnitude is 

graphed as a function of x (see results in table 1 and the respective graph 3) is a straight or almost 
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a straight line indicating the exponential character of line voltage magnitude against variable x. On 

the other hand, the line voltage phase is given by the expression βx ie. is a linear function of x and 

thus when is graphed against the variable x is a straight or almost a straight line indicating the 

above linearity that also appears in graphs 1 and 2. 

 

6. Discussion 

     From the theoretical analysis in section 3, the following can be stated : 

1) the magnitude (intensity) and the phase of voltage travelling wave diminish as the wave travels 

from the beginning of line to the end of line 

2) the magnitude (intensity) and the phase of voltage refracted wave decrease as the wave moves 

from the end of line towards the beginning of line 

3) in general the voltage magnitude and phase decrease from the beginning to the end of line. This 

implies having in mind the analysis in section 3 that either or both the voltage magnitude and 

phase can also increase from the beginning to the end of line. 

     Studying the results presented in table 1 and their graphs 1 to 2 of sections 4 and 5 respectively, 

we can summarise the following : 

1) the voltage magnitude (intensity) decreases as we move from the beginning towards the end of 

line 

2) the voltage phase (angle) decreases as we move from the beginning towards the end of line   

      Regarding now the information that is drawn from the graphs 1 or 2 is discussed in the 

following paragraphs. 

     Looking at graph 2 as it is stated above, the line voltage magnitude decreases as one moves 

from the left rear of the line where the power source is towards the right rear of the line where the 

load is. This observation implies that both line and load present an ohmic-inductive behaviour. In 

other words, we have a reactive power flow from the source to line and load. Regarding the load is 

pure ohmic as one can see in section 4 from the data of the typical power line given and on which 

the results and graphs of sections 4 and 5 are based on. Thus the above statement is right. 

     The line from the data given in section 4 has an ohmic (R) as well as an inductive (L) long-wise 

elements plus a capacitive (C) transversal element. The above statement that the line presents an 

ohmic-inductive behaviour that was drawn from graph 2 means that the capacitive element of the 

line does not produce enough reactive power to cover the needs of the inductive long-wise element 

of the line and thus the source comes to cover the rest reactive power needed. This is the 

information drawn from the line voltage magnitude graph as a function of x. 
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     Looking again at graph 2, we can see that the line voltage phase also decreases as one moves 

from the left rear of the line towards the right rear of the line. The above observation implies and 

cannot be otherwise that we have an active power flow from the left rear of the line where the 

power source is towards the right rear of the line where the load is in order to cover the needs in 

active power of both the ohmic element of the line and load. 

 

7. Conclusions 

     Thus, from the discussion developed in sections 5 and 6, the calculations results show that line 

voltage magnitude and phase decrease as we move from the beginning towards the end of line 

which verifies the analysis developed in section 3 of the paper that in general the voltage 

magnitude and phase decrease from the beginning to the end of line. 

     For better understanding, analysis and study of electric power transmission line voltage, we 

propose to study it using cartesian co-ordinates. This will be the subject of a future paper. 

 

References 

  [1] S.A. Nasar et al, «Electric energy systems», Prentice Hall,1996. 

  [2] Weedy B., «Electric Power Systems», John Wiley and Sons, 2002. 

  [3] Elgerd O., «Electric Energy Systems», McGraw-Hill, 2004. 

  [4] O.I. Elgerd, «Electric energy systems : An Introduction», McGraw-Hill,1982. 

  [5] J. Arrilaga et al, «Computer modelling of electrical power systems», John Wiley, 1983. 

  [6] C.R. Bayliss, «Transmission and distribution , Electrical engineering», Newnes,1999. 

  [7] T.R. Bosela , «lntroduction to electrical power system technology», Prentice Hall,1997. 

  [8] W. Stevenson, «Elements of power systems analysis», McGraw-Hill,1982. 

  [9] L. Faulkenberry, W. Coffer, «Electrical power distribution and transmission», 

        Prentice Hall,1996. 

[10] T. Gonen, «Modern power system analysis», John Wiley, 1987. 

[11] J. Grainger, W. Stevenson , «Power system analysis», McGraw-Hill,1994. 

[12] J.B. Knowles, «Simulation and control of electrical power systems», 

        Research Studies Press, 1990. 

[13] G.W. Stagg , A.H. El-Abiad, «Computer methods in power systems analysis», 

        McGraw-Hill,1986. 

[14] M. Hawary, «Electrical Energy Systems», CRC Press, 2000. 

[15] G. Leonidopoulos, «Approximate range of active and reactive power under voltage  



 
 

83 
 

magnitude and angle constraints», AMSE Journals; Modelling A, Vol. 19, No 3, 1988, pp.     

45-54.  

[16] G. Leonidopoulos, «Approximate range of voltage magnitude and angle under active  

and reactive power constraints», AMSE Journals, Modelling Α, Vol. 19, No 3, 1988, pp. 55-

64. 

[17] G. Leonidopoulos, «Fast linear method and convergence improvement of load flow numerical 

solution methods», Electric Power Systems Research Journal, Vol. 16, 

        No 1, February 1989, pp. 23-31. 

[18] G. Leonidopoulos, «Voltage and VAR control», AMSE Journals, Modelling A, Vol. 22, No 2, 

1989, pp. 27-63. 

[19] G. Leonidopoulos, «Approximate decoupled load flow solution», AMSE Journals, 

        Modelling A, Vol. 22, No 3, 1989, pp. 11-18. 

[20] G. Leonidopoulos, «Linear power system equations and security assessment»,  

        International Journal of Electrical Power and Energy Systems, Vol. 13, No 2,  

        April 1991, pp. 100-102. 

[21] G. Leonidopoulos, «A novel method for power system contingency analysis», AMSE 

Journals, Modelling A, Vol. 48, No 1, 1993, pp. 19-34. 

[22] G. Leonidopoulos, «Efficient starting point of load-flow equations», 

        International Journal of Electrical Power and Energy Systems, Vol. 16, No 6,  

        December 1994, pp. 419-422. 

[23] G. Leonidopoulos, «Π-transformation of transformer line», AMSE Journals, Modelling A, 

Vol. 65, No 1, 1995, pp. 1-5. 


